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Probabilistic Modeling and Simulation of
Transmission Line Temperatures Under

Fluctuating Power Flows
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Abstract—Increasing shares of fluctuating renewable energy
sources induce higher and higher power flow variability at the
transmission level. The question arises as to what extent existing
networks can absorb additional fluctuating power injection
without exceeding thermal limits. At the same time, the resulting
power flow characteristics call for revisiting classical approaches
to line temperature prediction. This paper presents a probabilistic
modeling and simulation methodology for estimating the occur-
rence of critical line temperatures in the presence of fluctuating
power flows. Cumbersome integration of the dynamic thermal
equations at each Monte Carlo simulation trial is sped up by a
specific algorithm that makes use of a variance reduction tech-
nique adapted from the telecommunications field. The substantial
reduction in computational time allows estimations closer to real
time, relevant to short-term operational assessments. A case study
performed on a single line model provides fundamental insights
into the probability of hitting critical line temperatures under
given power flow fluctuations. A transmission system application
shows how the proposed method can be used for a fast, yet accu-
rate operational assessment.

Index Terms—Line temperature dynamics, fluctuating power
generation, Monte Carlo simulation, variance reduction tech-
nique.

NOMENCLATURE

The following listing contains only the main symbols as
used in the paper. Other symbols are defined in the text, when
required.

A. Parameters

Number of aggregated generating units.

Total number of temperature thresholds.

Number of main trials.

Number of retrials starting at .

Convected heat-loss coefficient of line
(Wm K ).
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Radiated heat-loss coefficient of line
(Wm K ).

State transition frequency of generator ( ).

State transition probability.

Transition probability matrix.

Stationary probability of state .

Solar heat gain for line (Wm ).

Reference resistance of line at (in per unit).

Base apparent power (in megavolt amperes).

Temperature threshold (in Kelvin).

Ambient temperature of line (in Kelvin).

Maximum allowed operating temperature of line
(in Kelvin).

Reference temperature of line (in Kelvin).

Starting time of the analysis period (in seconds).

Stopping time of the analysis period (in seconds).

Reactance of line (in per unit).

Thermal resistivity coefficient of line (K ).

Accuracy level.

Transition rate from up to down state of generator
(s ).

Transition rate from down to up state of generator
(s ).

State sampling frequency (s ).

Heat capacity of line (J m K ).

Mean holding time in state (in seconds).

Vector of meteorological parameters for line .

B. Functions

Expectation.

Cumulative distribution function.

Phase current on line (in amperes).
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Ampacity of line under steady-state conditions
(in amperes).

Convected heat loss of line (W m ).

Ohmic loss of line phase conductor (W m ).

Radiated heat loss of line (W m ).

Resistance of line (in per unit).

Relative error.

Variance.

C. Variables

Conditional probability that reaches ,
given that it has already reached .

System state vector.

Temperature of line (in Kelvin).

Voltage magnitude at node (in per unit).

Probability that reaches .

Estimator of in all trials.

Estimator of in trial .

Voltage angle at node (in radians).

Number of events in trial at which .

I. INTRODUCTION

I NCREASING volumes of fluctuating renewable energy
sources, as exemplified by wind energy conversion, are

leading to more variable and less predictable power flows
in networks [1]. This also implies a decrease in the average
network utilization and, possibly, an increase in the probability
of hitting thermal limits due to peak flows. While in the long
run, network assets will eventually be upgraded, the expansion
of the transmission system is rather slow with time horizons
up to several years. The existing assets therefore need to be
used as efficiently as possible. As a consequence, the question
arises whether present classical concepts for estimating the
loading capability of overhead lines are adequate to cope with
these rapid developments. In this respect, it has recently been
shown that in order to fulfill the sag clearance requirements, the
direct use of temperature rather than power limits allows for
a significantly more precise and less conservative loadability
assessment [2], [3]. New approaches and tools are crucial not
only for contingency analysis, but also for releasing avail-
able power transfer capability, potentially underestimated by
classical line rating methodologies, to increase the amount
of fluctuating renewable energy sources that can be securely
integrated in the system as well as to increase the volume
of energy that can be traded between nodes. The uncertainty
given by the stochastic nature of renewable sources thereby
calls for approaches based on probability concepts [4]. In this
outlook, existing probabilistic models for different renewable
energy sources (e.g., [5]–[7]), theoretical advances in simula-

tion speed-up techniques (e.g., [8] and [9]) and the evolution
of computational power pave the way to Monte Carlo-based
methodologies.

On these premises, this paper introduces a probabilistic mod-
eling and simulation approach for assessing the impact of power
flow fluctuations on the occurrence probability of maximum
allowed transmission line temperatures. The time-varying
temperatures are explicitly modeled and calculated from the
heat balance equations. Coupling to and interaction with the ac
power flow variables is carried out through the ohmic losses
and the temperature-dependent conductor resistances. Monte
Carlo simulations are used to generate the probabilistic infor-
mation on the line temperature dynamics in the presence of
uncertainties adherent to, for instance, fluctuating wind turbine
generation or forced outages of conventional generating units.
The proposed methodology can be applied regardless of the
specific probabilistic model used for capturing the relevant
stochastic phenomena. In order to overcome the downside of
the slow simulation speed when performing massive Monte
Carlo extractions with continuous integration of the heat bal-
ance equations, a specific algorithm has been developed for
the problem under analysis. It is based on a technique for the
fast simulation of rare events called Repetitive Simulation
Trials after Reaching Thresholds (RESTART), mainly adopted
hitherto in the telecommunications field.

This paper is organized as follows. Section II introduces the
electrothermal model for the dynamic calculation of overhead
line temperatures. Section III discusses the modeling framework
and the Monte Carlo accelerated algorithm for the probabilistic
line temperature assessment. Section IV reports the simulation
results from a single line example, revealing the impact of dif-
ferent flow fluctuation characteristics on the line temperature
dynamics, as well as demonstrating the efficiency of the accel-
eration algorithm. An additional case study is carried out for
a transmission network with fluctuating wind power injections
and generator failure events, conventionally modeled through
Markov chains, highlighting the benefits of the methodology
for short-term operational purposes. Section V concludes this
paper.

II. ELECTROTHERMAL MODEL FOR

LINE TEMPERATURE DYNAMICS

The electrothermal model described here aims at calculating
the time-varying transmission line temperatures as driven by
the power flow fluctuations and meteorological conditions.
Each conductor of a transmission line , connecting node
with node , is heated by its temperature-dependent ohmic
losses , with being the
phase current, and by the solar heat gain [10]. Convection

and radiation are responsible for cooling.
This heat balance yields the following differential equation for
the conductor temperature :

(1)

where is the heat capacity of the conductor. Since all three
conductors have the same electrical and thermal characteristics,
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can be regarded as the transmission line temperature. Its
time evolution is derived by numerically solving (1), applying
standard integration methods. Following the notation given in
[2], the convection and radiation terms can be calculated by

(2)

(3)

where and are the convected and radiated heat
loss coefficients, is the vector of weather parameters, and

is the ambient temperature. Assuming a -equivalent
line model with base power and neglecting the shunt con-
ductance, is obtained from the three phase, per unit (p.u.)
Joule losses as

(4)

where is given by the power flow variables as

(5)

The temperature of a transmission line, in turn, affects its re-
sistance, with a behavior that can be approximated by a linear
model [2]

(6)

where denotes the thermal resistivity coefficient and
is the resistance at the reference temperature . This depen-
dence of the resistance on the actual temperatures cannot be
neglected for accurate power flow calculations [11]. However,
after a change of the power flow, the voltage magnitudes and an-
gles show only small variations during the resulting temperature
transients, having time spans typically in the range of 30 min
[2]. This allows for a temporary decoupling of the power flow
variables from the actual line temperature, meaning that the re-
sistances need to be updated only periodically after defined time
steps or after significant temperature changes. The specific up-
dating rules are to be defined on the basis of each given study
case. The variation of the line reactance with the temperature
is small and can be neglected [2].

In practice, the operation of transmission lines is usually
constrained by thermal ratings, whereas the maximum allowed
operating temperatures become converted into ampacities (i.e.,
maximum current carrying capacities). The ampacity of a
transmission line is conventionally calculated on the basis of
steady-state thermal ratings [12]

(7)

where is the maximum allowed operating temperature of the
line. Determining can either be based on conservative as-
sumptions for the weather parameters, or on the actual condi-
tions [12]–[14]. The latter usually allows for higher ampacity
but requires the monitoring of the line temperatures and meteo-
rological data.

III. MODELING FRAMEWORK FOR LINE TEMPERATURE

PROBABILISTIC ASSESSMENT

A. Conceptual Basics

In the presence of fluctuating power flows, the electrothermal
model can be deployed in Monte Carlo-based simulations for es-
timating the probability that a transmission line reaches a certain
temperature within a given time span. Depending on the spe-
cific study, the flow fluctuations can be induced by deterministic
and probabilistic models for various phenomena, ranging from
time-varying demand patterns and short-term energy trading be-
havior to forced component outages and, essentially, fluctuating
renewable energy sources. In order to overcome the prohibitive
downside of the slow simulation speed coming along with the
extensive simultaneous solution of the power flow and the heat
balance equations, a specific variance reduction algorithm has
been developed. The algorithm borrows from the RESTART
technique for the fast simulation of rare events, which has been
proposed in the telecommunications field.

The line temperature assessment methodology introduced
here is completely general, whereas the RESTART technique
can be applied to both Markovian and non-Markovian processes
[8]. This allows combining the methodology with a broad spec-
trum of different probabilistic models. Some examples are
Markov models for the stochastic failure and repair behavior
of generators, transmission lines, and other components [15],
or ARIMA models for the power fluctuations from wind farms
[16], [17]. The methodology will be detailed next.

B. Accelerated Monte Carlo Simulation for Dynamic Line
Temperature Estimation

The objective of the assessment is to estimate the probability
that the temperature of a transmission line reaches

the maximum allowed operating temperature within a time
period . A sequential Monte Carlo simulation therefore
samples the chronological state transitions of each relevant
system component [15]. An example is the time-varying
power output state of a wind farm. The state of the overall
power system at each time is then given by the combination
of all respective component states. The chronological system
state transition process, in turn, is needed for determining the
time-varying power flow which eventually allows calculating
the dynamics of the transmission line temperatures according
to (1). A crude Monte Carlo method repeats these simulation
steps times within and estimates the probability as

(8)

with being the zero-one indicator that reaches
within trial . The accuracy of the estimation can be quantified
by its relative error

(9)
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Fig. 1. Left: crude simulation, right: simulation by means of RESTART with
� � ��� � �� � � �� � � � and � � �. The numbers correspond
to an exemplary sequence of consecutive simulation steps (see main text). The
squares indicate the initial states for the retrials.

The basic idea of RESTART is to perform a higher number
of simulation trials in those regions of the state space, where
the event of interest is more often provoked [8], [18]. Unlike
other variance reduction methods for Monte Carlo simulations,
such as the importance sampling technique [15], RESTART has
no influence on the sequence of the stochastic events in abso-
lute time. Next, we introduce the adaptation of the technique
to the line temperature estimation problem. Let us first divide
the temperature state space into intermediate inter-
vals with thresholds

. Starting at with ,
the line temperature has to pass all intervals in order to reach

. We further denote as the conditional probability that
reaches threshold before the time reaches , given that
has already passed threshold . The occurrence prob-

ability of reaching then becomes

(10)

A crude Monte Carlo method repeatedly simulates the system
within (see Fig. 1, left). The higher a threshold , the
less sample paths are reaching it and the less accurate is the
estimation of . In order to compensate for this lack of trials in
the regions closer to , RESTART stores the system state as
soon as reaches a threshold , and splits the sample path
into retrials for the time during which it stays above this
threshold (see Fig. 1, right). The first paths are stopped
when they again fall below in order to avoid simulation time
in the regions away from . Only the last path is permitted to
proceed so that it becomes a continuation of the original path.
Consequently, a larger number of trials for accurately estimating
each are achieved.

Different implementation schemes of the RESTART tech-
nique have been proposed [8], [18]. We apply the “global-step”
approach for estimating . Its main advantage is the need to
store, at most, system states only, as indicated by the squares
in Fig. 1. Thereby, the unbiased estimator of is given by

(11)

where is the total number of main trials starting at , and
counts how many times reaches in trial . The simu-
lation is stopped when the relative error of becomes smaller
than a predefined accuracy level

(12)

where is the estimate in trial . To maximize
the computational gain, the thresholds are chosen in such a way
that and reach their quasioptimal values [8]

(13)

The position of the thresholds and the values of are deter-
mined by performing a pilot run.

As shown by the flowchart in Fig. 2, the algorithm consists of
several loops. All variables needed for the calculation of ,
such as the actual generator or load states and the actual tem-
peratures of all transmission lines, are stored in the system state
vector . The time-varying component states are thereby gov-
erned by case-specific deterministic and probabilistic models.
The outer loop starts the main trial at with the initial system
state . As soon as this main trial and all triggered retrials have
been finished, the probability of reaching is estimated, to-
gether with the relative error. The inner loops simulate the time
evolution of and perform all of the consecutive retrials if

reaches a threshold . The heat balance equation is con-
tinuously integrated, whereas the line resistances are periodi-
cally updated as described in Section II. The numbers in Fig. 1,
right, illustrate an exemplary sequence of the resulting simula-
tion steps. The first trial (step ) does not reach the first temper-
ature threshold and, as in a crude Monte Carlo approach, is only
stopped when the simulated time is equal to . When reaching

, the second trial (step ) becomes split at system state ,
whereas the first retrial (step ) is stopped when falling below
this threshold again. The second retrial (step ) is again split
when reaching at . Restarting from this stored system state,
both retrials (steps and ) fall again below . As the con-
tinuation of the original path, only the second retrial (step )
is further simulated, reaching again . The respective first re-
trial (step ) eventually reaches and the subsequent second
retrial (step ) is stopped when the time is equal to . Having
thus finished all retrials starting from , the algorithm proceeds
with the remaining retrial starting from (step ).

IV. CASE STUDY APPLICATIONS

A. Example A: Fluctuating Power Flows on a Single Line

A single line example is used to gain fundamental insights
into the impact of different flow fluctuation characteristics on
the line temperature dynamics. The values of the power flow
variables and line temperature at are depicted in Fig. 3.
The line consists of three “Drake” 26/7 ACSR conductors with
a length of 20 km. The corresponding parameters for calculating
the temperature behavior are given in Table II. The power injec-
tion at busbar I is generated by 60 single units with an
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Fig. 2. Flowchart of the accelerated algorithm for estimating the probability of
line temperature � .

individual output of MW real power and zero reac-
tive power. For the purpose of this experimental study, the power
ouput of each single generating unit is governed by
a simple two-state process, whereas is either ,
being in the up state, or zero, being in the down state. The sto-
chastic alternation between these two states is determined by the

Fig. 3. Single line layout.

Fig. 4. Combined power injection patterns. (a) � �0.05 h � � � 1. (b)
� � 0.5 h � � � 1. (c) � �0.05 h � � � 10. (d) � �0.5 h � � � 10.

transition rates and , implying exponentially distributed
holding times

(14)

where and are the time spans measured from the mo-
ment of entering the up state and down state, respectively. The
state transition frequency is given by

(15)

and corresponds to the average number of up-down-up cycles
per time unit. The value of this simple model is the high flexi-
bility to reproduce a large number of combined power output
patterns , while the mean power
output stays constant, allowing to systematically
study the impact of different fluctuation characteristics. This is
achieved by varying while keeping the ratio con-
stant and by aggregating different numbers of generating units
into different clusters, within which the units simultaneously
follow the same production cycles over time. We denote the size
of such a cluster (i.e., the number of aggregated units) as . A
comparison between Fig. 4, left, and Fig. 4, right, shows how an
increased value of leads to faster fluctuation of the injection
at busbar I. According to Fig. 4, upper part, compared to Fig. 4,
lower part, a smaller number of is leading to a smoother time
series, while a large value implies a strong fluctuation around

30 MW.
The algorithm (Fig. 2) is implemented in Matlab [19],

running on an Intel Xeon E5450 quad-core processor with
2.99-GHz central processing unit (CPU) speed. By making
use of the temporary decoupling of the power flow variables
from the line temperature, the line resistance is updated only in
case of a generator output change. Fig. 5 shows an exemplary
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Fig. 5. Lower part: combined power injection sequence. Upper part: resulting
dynamic temperature behavior. The line marked with circles corresponds to the
temporary decoupling of the power flow from � ���, being overlapped by the
numerical results without the decoupling (line marked with squares). The line
without markers corresponds to the steady-state temperature.

Fig. 6. Estimates of � in relation to the fluctuation frequency � for � �
�� �� �� � (triangles, circles, squares, and diamonds, respectively). The error bars
indicate ������.

power injection sequence and the resulting temperature be-
havior, based on this simplification and without the temporary
decoupling. The excellent match confirms the validity of this
model assumption. In addition, Fig. 5 depicts the steady-state
temperatures corresponding to each subsequent power output
state. These values differ significantly from the actual tempera-
tures due to the thermal inertia, supporting the need to consider
the transient behavior.

For this example, we define as the probability that the line
temperature reaches the maximum allowed value C
within the time interval h, h). In order to un-
cover the effect of the fluctuation, the sensitivity of with re-
spect to both the “fluctuation frequency” and the “fluctuation
magnitude” has been analyzed. Fig. 6 reports the resulting
values of . Starting with a low value of , its increase leads
to a higher probability to reach 100 C. However, as is ex-
ceeding a critical value, starts to decline again. This result
can be explained by the thermal inertia effects according to (1).
While the combined power injection reaches more often higher
values, the average residence time of such combined states be-
gins to fall below the minimum time needed to heat the line up to

. A larger fluctuation magnitude is leading to a higher prob-
ability to hit .

Fig. 7. Decrease of������with the simulation time. Dashed-dotted line: crude
simulation, continuous line: accelerated simulation. (a) � � 			� h � � � �.
(b) � � 0.1 h � � � 2. (c) � � 0.01 h � � � �. The tables show the
selected thresholds and number of retrials.

The reduction of the simulation time by the proposed accel-
eration algorithm in comparison to a crude Monte Carlo simula-
tion is shown in Fig. 7, plotting the decreasing value of
in time for different values of and . The time savings for
reaching a desired accuracy level are significant, whereas the
higher the probability, the faster is the simulation. In case of

0.01 h and 2 , for example, an ac-
curacy of 0.1 was reached after 1050 s. Even after 10
h of simulation time, corresponding to trials, this
accuracy level could not be reached with the crude approach.

The practical relevance of the fundamental findings gained by
this study becomes substantiated by the following application
example.

B. Example B: Line Temperatures Within a Transmission
Network Including Wind Power

This case study demonstrates the application and practical
benefits of the discussed approach for assessing the probabil-
ities of reaching specified line temperatures within a transmis-
sion network. The exemplary 5-bus network with the electrical
characteristics of the transmission lines is taken from [20]. The
additional assigned line lengths are given in Table III. A single
line diagram including the values of the peak loads is shown in
Fig. 8. The base power is 100 MVA.

The fluctuation of the power flows is induced by the demand
trajectory, by conventional generators being subject to random
failures and by fluctuating wind power injections. A typical op-
erational time horizon of 4 h [3] is chosen to be analyzed with
regard to the line temperature dynamics. For the deterministic
demand trajectory, a typical hourly load curve is taken from [21]
(see Table IV). All loads in the system simultaneously follow
this curve. The total demand is covered by two conventional
generating stations at busbar 1 and busbar 2 and a wind farm
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Fig. 8. Single line diagram of the 5-bus/7-branch network indicating the values
of the peak loads. A wind farm is connected to busbar 4.

at busbar 4. Busbar 1 serves as the slack bus with its gener-
ating station assumed to be perfectly reliable, as generation ad-
equacy issues are out of the scope of this paper. The second
generating station at busbar 2 consists of 8 single combustion
turbines with a power output of 5 MW and 3.75 MVAR each.
These units are subject to independent random failures and re-
pair processes, being conventionally modeled as a stochastic
up-down-up cycle [15], corresponding to (14). The failure and
repair rates are taken from [21] and set to 1/450 h and

1/50 h , respectively. The ramp rates of these generators
are assumed to be sufficiently small to become neglected. The
predicting time series for the fluctuating wind power generation
is derived here by using a simple Markov chain model as de-
scribed in [22]–[24], with the formalism given in Appendix B.
However, owing to the generality of the proposed line tempera-
ture assessment methodology, alternative probabilistic models
for short-term wind power forecasting could be readily used
as well, such as the Markov-switching autoregressive model
[25] or the ARIMA technique [16], [17], also depending on
the specific meteorological conditions and data availability. The
time-homogeneous and time-continuous Markov chain adopted
in this case study has been derived in [23] for an existing wind
farm. The corresponding power output states and the transition
probability matrix are given in Tables V and VI. For all lines,
the “Drake” 26/7 ACSR conductor type is taken. In order to re-
duce complexity, all lines are assumed to be exposed to the same
wind speeds in time, being perfectly correlated with the output
states of the wind farm. It should be noted that a stochastic treat-
ment of wind speed variations in time and space is also pos-
sible in the framework of the proposed methodology. All other
weather conditions are assumed to be constant and as of ex-
ample A. This leads to the convected heat-loss coefficients given
in Table VII. The remaining parameters for the electrothermal
model are taken from Table II. The ac power flow equations have
been solved by using the Matpower package [26]. Initially, at

0, the wind farm is in state 5, three combustion turbines
are in the down state and all line temperatures are at the corre-
sponding steady-state values.

TABLE I
ESTIMATED PROBABILITIES �� OF REACHING THE LINE TEMPERATURE �

Table I shows the resulting estimates of for each transmis-
sion line and different temperatures. All values have an accuracy
level of 0.05. Since both line characteristics and weather
conditions are assumed to be the same for all lines, the temper-
ature distribution directly reflects the actual power flow distri-
bution on the network. Furthermore, the values of for different
temperatures indicate the strength of the power flow fluctuation
on each line. Only line 1–2 reaches the maximum allowed oper-
ating temperature C with a small probability during

0 h, 4 h . This line becomes heavily loaded if the gen-
erating station at busbar 1 has to supply a large amount of the
load in the system. This is given under the condition of a high
demand level while, at the same time, the wind power output is
low and several combustion turbines at busbar 2 are unavailable.
The simulation time needed to compute ( C)
with 0.05 was about 3 min for ( C) with

0.1 about 10 min. The maximum temperatures of all other
lines are found to be significantly below during the analysis
period whereas the probabilities decrease sharply. These obser-
vations refer to generally low loading and a small fluctuation of
the power flow on these lines.

In order to compare these probabilities as derived by the dy-
namic heat balance equation (1) with probabilistic steady-state
line rating methods, we calculated the probability of reaching
the current , which would lead to the corresponding steady-
state line temperature under the given weather conditions ac-
cording to (7). The resulting values are indicated in Table I for
line 1–2. The steady-state approach significantly overestimates
the probability of reaching higher temperatures. At the max-
imum allowed operating temperature C, the esti-
mation of differs by about a factor 40 in comparison to the
proposed, more accurate approach. Indeed, at these relatively
low values of , the thermal inertia effect considerably reduces
the probability to reach such high line temperatures within the
selected time horizon, as the fluctuation frequency of the power
flow exceeds the critical value identified in example A.

V. CONCLUSION

The integration of fluctuating renewable energy sources
is leading to a higher variability of the power flows and a
higher operational uncertainty within the existing transmission
networks. In order to adapt current loading capability assess-
ment methods to this changing situation, this paper presents a
probabilistic approach for estimating line temperatures being
subject to various degrees of variability of the power flow. The
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TABLE II
PARAMETERS FOR THE ELECTROTHERMAL MODEL

TABLE III
LENGTH OF THE TRANSMISSION LINES

TABLE IV
HOURLY LOAD LEVELS, ADOPTED FROM [21]

temperature transients are explicitly taken into account and
coupled to power flow solutions in the presence of stochastic
behavior. The probabilistic approach makes use of Monte
Carlo simulations and has been made computationally efficient
by formulating a specific algorithm which deploys a variance
reduction technique borrowed from telecommunication appli-
cations. The computational results show that the methodology
allows for a fast, yet accurate assessment of the operational line
temperatures and associated possible overload occurrences. The
presented case studies show evidence that the thermal inertia of
the transmission lines can significantly reduce the probability
of reaching the maximum allowed operating temperature. Due
to its generality, the methodology can be combined with a
broad spectrum of different probabilistic component models
and, therefore, offers numerous applications, including a pe-
riodic operational security assessment and accurate network
capacity estimation. The practical implementation may be
particularly relevant for coping with power fluctuations from
large wind farms or for assessing economic transactions within
a market framework. The use of online data acquired from
existing supervisory control and data acquisition (SCADA)
systems, such as loadings, line thermal performance, and actual
meteorological conditions, as well as incorporating numerical
weather predictions would thereby significantly increase the
accuracy of the assessment.

APPENDIX A
CASE STUDY DATA

Please see Tables II–VII.

APPENDIX B
MARKOV CHAIN FORMALISM

A Markov chain is a random process fulfilling the
(Markov) property that, given the present state, the future state
is independent of the past state [27]

(16)

TABLE V
POWER OUTPUT STATES OF THE WIND FARM (IN PER UNIT), ADOPTED FROM

[23]

TABLE VI
TRANSITION PROBABILITY MATRIX ����� OF THE WIND FARM WITH � �

0.067 MIN , ADOPTED FROM [23]

TABLE VII
CONVECTED HEAT LOSS COEFFICIENTS FOR EXAMPLE B

The chain is called discrete if takes values in the discrete
space, and time-continuous if these values change in continuous
time [27]. The transition probability is defined as

for (17)

If for all , the
chain is said to be time-homogenous. The transition probabili-
ties are estimated from empirical time series, whereas the states
are recorded with the frequency . The transition
probabilities are then written in the stochastic matrix

...
...

. . .
...

(18)

where is the total number of discrete states. For each row ,
it is . In a time-continuous Markov chain, the
holding time in a given state is exponentially distributed with
mean .
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